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The solvation force for two-dimensional Ising strips is calculated via exact diagonalization of the transfer
matrix in two cases: the symmetric case corresponds to identical surface fields and the antisymmetric case to
exactly opposite surface fields. In the symmetric case the solvation force is always negative �attractive�, while
in the antisymmetric case the solvation force is positive �repulsive� at high temperatures and negative at low
temperatures. It changes sign close to the critical wetting temperature characterizing the semi-infinite system.
The properties of the solvation force are discussed, and the scaling function describing its dependence on
temperature, surface field, and strip’s width is proposed.
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I. INTRODUCTION

The properties of the solvation force in various
condensed-matter systems have been the subject of very in-
tensive research during recent years �1–10�. Lattice models
play a special role among the considered systems. Although
many important results were obtained in this field by differ-
ent methods of taking into account fluctuations which deter-
mine the properties of the analyzed systems, the approach
based on the exact evaluation of the partition function via the
transfer matrix method still plays a distinguished role. Below
we report our results on the properties of the solvation force
for two-dimensional �2D� Ising strips. They are obtained via
exact diagonalization of the transfer matrix, which is then
followed by numerical solutions of equations for
eigenvalues.

We consider an Ising model on a 2D square lattice con-
sisting of M rows and N columns. There is no bulk magnetic
field acting on the system, and there are two surface fields: h1
acts on spins in the first row and h2 acts on the Mth row. The
Hamiltonian of this model takes the standard form

H��si�� = − J�
n=1

N

�
m=1

M−1

sn,msn,m+1 − J�
n=1

N

�
m=1

M

sn,msn+1,m

− h1�
n=1

N

sn,1 − h2�
n=1

N

sn,M , �1�

where sn,m= �1 with n=1, . . . ,N, m=1, . . . ,M denotes the
spin located in the nth column and mth row, and J is the
coupling constant. Periodic boundary conditions in the hori-
zontal direction are imposed: sN+1,m�s1,m.

Our purpose is to determine the properties of the solvation
force experienced by the system boundaries. In the following
we consider two cases: the symmetric case �S� corresponds
to h1=h2, and for the antisymmetric case �AS� one has
h1=−h2.

Although the strip of finite width experiences no phase
transition, we shall often refer to two critical temperatures:
the bulk critical temperature kBTc=2J / ln�1+	2� and the

wetting temperature Tw, which characterizes the critical wet-
ting transition in a semi-infinite system with surface field h1.
The wetting temperature fulfills the equation

cosh 2K1 = cosh 2K − sinh 2Ke−2K, �2�

where K=J / �kBTw�, K1=h1 / �kBTw�, and kB is the Boltzmann
constant. For a small surface field h1 this equation leads to

Tc − Tw

Tc
=

1

4
�1 + 	2�ln�1 + 	2�
h1

J
�2

,
h1

J
→ 0. �3�

For h1�J one has Tw=0 and there is no wetting transition.

II. SOLVATION FORCE

The dimensionless free energy per one column is defined
as

f�T,h1,M� = lim
N→�

1

N

F
kBT

= − lim
N→�

ln Z
N

, �4�

where Z is the canonical partition function for the Hamil-
tonian �1�, which we evaluate using the exact transfer matrix
method �11,12�. The free energy may be separated into three
types of contributions:

f�T,h1,M� = Mfb�T� + fs�T,h1� + f int�T,h1,M� , �5�

where fb is the bulk free energy per one spin �13� and fs is
the surface free energy; both fb and fs are M independent.
The remaining term f int describes the interaction between the
system boundaries. It tends to 0 as M goes to infinity, and
from this term the solvation force originates.

The solvation force is, in general, defined as the minus
derivative of f int with respect to M. In our case, because M
takes only integer values, we use the definition

fsolv�T,h1,M� = − �f int�T,h1,M + 1� − f int�T,h1,M�� , �6�

which leads to the expression

fsolv�T,h1,M� = f�T,h1,M� − f�T,h1,M + 1� − fb. �7�

The solvation force for the 2D strip has been already ana-
lyzed in the Tw=0 case �5� corresponding to h1=J. Our
analysis covers the whole spectrum Tw�0—i.e., h1�J. To*pionow@fuw.edu.pl
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calculate the solvation force we used the methods described
in �11,12,14,15�. The complete analysis �including also the
inhomogeneous boundary fields� will be published elsewhere
�16�; here, we discuss only the main results.

First, we briefly discuss the symmetric case �S�. The cor-
responding solvation force fsolv

S is plotted in Fig. 1 for two
cases: Tw�0 �solid curve� and Tw=0 �dashed curve�. The
difference between these two functions is only of quantita-
tive nature—decreasing the surface field h1, i.e., increasing
the wetting temperature Tw results in decreasing the absolute
value of the solvation force. The minimum of the solvation
force fsolv

S is located at Tmin
S �Tc.

For opposite surface fields �AS� the solvation force fsolv
AS in

the Tw�0 case, i.e., h1�J, differs substantially from the
Tw=0—i.e., h1=J—case. Figure 2 presents a typical plot of
fsolv

AS as a function of T. For low temperatures this force is
negative �attractive� and has a minimum at Tmin

AS �Tw. The
solvation force is negative at the wetting temperature and has
a zero at T*�Tw. Above T* the solvation force is positive
�repulsive� and has a maximum at Tmax

AS �Tc �for M large
enough�. This remains in contrast with the Tw=0 case in
which the solvation force is positive for all temperatures.

Exactly at the bulk critical temperature Tc the dependence
of the solvation force on M has been found using conformal
invariance �17,18�:

fsolv
S �Tc,h1,M� = −

�

48M2 + O�1/M3� , �8�

fsolv
AS �Tc,h1,M� =

23�

48M2 + O�1/M3� . �9�

This result, in particular the universal values of the ampli-
tudes, has been reproduced by our analysis. In the rest of this
paper we exclusively discuss the antisymmetric case �AS�.

First, we concentrate on the temperature T* at which the
solvation force becomes zero. We have found that for fixed
h1�0 and for M→� this temperature approaches the wet-
ting temperature Tw exponentially:

T* − Tw

Tc
= A�h1�e−B�h1�M, M → � , �10�

where A�h1� and B�h1� are positive functions of the surface
field h1.1 We have found that for h1→0—i.e., Tw→Tc—one
has A�h1�→0.

We note that this result is different from the correspond-
ing result obtained within the mean-field theory where T* is
exponentially shifted below Tw. It is also different from the
corresponding result obtained for the restricted solid-on-solid
�RSOS� model, where T* is equal to Tw �19�.

III. SCALING FUNCTION

In this section we discuss the scaling function that de-
scribes the behavior of the solvation force fsolv

AS �T ,h1 ,M� for
large M and subcritical temperatures. The relevant scaling
function X�x� has already been proposed to describe fsolv

AS in
the Tw=0 case �5�:

fsolv
AS �T,h1 = J,M� =

1

M2X
 M

	−�T�
� . �11�

The correlation length for the 2D Ising model close to Tc is
	−�T�=	0

−t−1, where t= �Tc−T� /Tc�0 and
	0

−= �4 ln�1+	2��−1. The scaling function X�x� can be ob-
tained numerically from the transfer matrix spectrum and
some of its properties can be proved analytically �see Eq. �9�
and �20��—namely,

X�0� = 23�/48, �12�

X�x� = 2�2/x, for x → � . �13�

Here we would like to extend this result to the h1�J—i.e.,
Tw�0—case.

For the 2D Ising model the gap exponent 
1=1 /2 �19,21�
and for T�Tc the scaling behavior

1In principle, these functions can be found by fitting Eq. �10� to
our numerical results. However, for Tw�0.5Tc and M �10 the dif-
ference between T* and Tw is of the order of numerical errors and
we were unable to precisely determine the functions A�h1� and
B�h1�.
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FIG. 1. Comparison of the solvation force fsolv
S for Tw=0.8Tc

�h1�0.60J� �solid curve� and Tw=0 �h1=J� �dashed curve� for the
symmetric case h1=h2. Both curves correspond to the value M
=50.
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FIG. 2. The solvation force fsolv
AS as a function of temperature for

Tw=0.8Tc �i.e., h1�0.60J� and M =50 in the antisymmetric case
h1=−h2. Note that the difference between the zero of the solvation
force T* and the wetting temperature Tw is not visible in this scale.
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fsolv
AS �T,h1,M� =

1

M2Y�x,y� , �14�

where

x =
M

	0
−t−1 , y =

A0

kBTc

h1

t1/2 �15�

come into play in the limit M→� with x and y fixed. This
implies additionally the t→0, h1→0 and Tw→Tc limits. The
coefficient A0= ��1+	2� / ln�1+	2��1/2 in Eq. �15� has been
introduced such that the value y=1 corresponds to T=Tw,
and then Eq. �3� is satisfied. For y�1, Eq. �14� gives the
solvation force fsolv

AS below the wetting temperature and for
y�1 above Tw.

Equation �14� may be rewritten in the form leading to the
scaling function

Y�x,y� = lim
M→�

YM�x,y� , �16�

where

YM�x,y� = M2fsolv
Tc
1 −
x	0

−

M
�,kBTcy
 x	0

−

MA0
2�1/2

,M� .

�17�

Figure 3 presents plots of YM for fixed value of x=1 and
selected values of y� �0,1.2� to exhibit the convergence of
the series YM. Typically, for M large enough one has

YM�x,y� = Y�x,y� +
C�x,y�

M
+ O�M−2� . �18�

To estimate the values of the function Y we evaluated YM for
M =200. We note that a different way of obtaining the func-
tion Y, based on the least-squares method �22� �details of our
analysis will be explained in �16�� which allows us to calcu-
late the functions Y and C in Eq. �18�, leads to similar results
�the differences are not visible on the scale of our figures�.
The plots of function Y are shown in Fig. 4.

Next, we investigate the relation between the scaling
functions Y�x ,y� and X�x�. The function X�x� is calculated

in the limit M→�, t→0 with h1 and Mt fixed. By applying
this limit to Eqs. �14� and �11� one gets

X�x� = lim
y→�

Y�x,y� . �19�

The functions X�x� and Y�x ,y� plotted for selected values of
y are presented in Fig. 5. Additionally we have found that
X�x�−Y�x ,y��y−2 for large y.

The scaling function Y�x ,y� changes its sign; see Figs. 4
and 5. The zeros of the scaling function are denoted by
y*�x�—i.e., Y(x ,y*�x�)=0. We have found that for large x
the function y*�x� approaches 1 exponentially from above.
This allows us to show that in the scaling limit M→�, h1
→0, and Mh1

2 fixed one has

T* − Tw

Tc
=

Tc − Tw

Tc
−

1

M
f
Mh1

2

kB
2 Tc

2� + O�1/M2�,

=
1

M
g
Mh1

2

kB
2 Tc

2� + O�1/M2� , �20�

where f��� and g��� are positive functions which can be de-
termined via an implicit formula
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FIG. 3. Convergence of the scaling function. The function YM is
evaluated for x=1 and for several values of y and M presented in
the plot.
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FIG. 4. Plots of the scaling function Y. All plots were obtained
from YM for M =200.
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FIG. 5. The scaling function Y plotted for y=0.5,1.5,2.5,3.5
and the scaling function X. All points were calculated for M =200.
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A0�1/2 = �f����1/2y*
„f���/	0

−
… , �21�

g��� = A0
2 − f��� . �22�

We note that Eq. �20� is different from Eq. �10� because
different limiting procedures were applied in these two cases.

IV. CONCLUSIONS

In the symmetric case of identical surface fields the sol-
vation force is negative �attractive� and has a minimum at the
supercritical temperature. The solvation force is calculated
for system parameters such that Tw�0 differs only quantita-
tively from the one in the case Tw=0; see Fig. 1.

In the antisymmetric case of opposite surface fields the
solvation force is positive at high temperatures and negative
at low temperatures. It changes its sign at temperature T*

�Tw; see Fig. 2. In the case of h1 fixed and M→� the

difference T*−Tw approaches 0 exponentially quickly in M.
The scaling function Y�x ,y� was proposed to describe the

behavior of the solvation force for T�Tc in the limit h1
→0 and M→�; see Figs. 4 and 5. We checked that in the
limit of high surface field �y→� in Eq. �14�� this scaling
function approached the scaling function describing the scal-
ing behavior of the solvation force in the Tw=0 case. In
addition, the zeros of the scaling function were investigated
to find the formula for T*−Tw in the h1→0 limit.
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